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A B S T R A C T   

Caffeine (CAF) is a common central nervous system stimulant. However, the excessive intake of CAF can cause 
physical discomfort to consumers and affect the health of drinkers. Chlorogenic acid (CGA) is a powerful anti-
oxidant with antiinflammatory and antiobesity properties. Here, we used an artificial neural network (ANN) for 
the intelligent sensing and electrochemical measurements of CAF and CGA by differential pulse voltammetry and 
linear sweep voltammetry. The measurement error of the electrochemical method for detecting CAF concen-
trations could be eliminated using a large amount of electrochemical measurement data for ANN training. The 
CAF and CGA concentrations were sensed with an accuracy of nearly 90%. A sample of real coffee was also 
sensed with an accuracy rate of over 90%. The results showed that this method can effectively eliminate the 
errors of electrochemical measurement methods and instruments, and the accuracy rate of calibration line 
measurements exceeded that of the traditional electrochemical method.   

1. Introduction 

Tea and coffee liquids contain caffeine (CAF), which has a refreshing 
effect. CAF is a central nervous system stimulant of the class of meth-
ylxanthines, and its molecular shape is similar to that of adenosine [1]. 
Adenosine is a purine nucleoside comprising adenine molecules linked 
to a ribofuranose moiety by a β-N9-glycosidic bond. Adenosine is a 
neuromodulator that has an inhibitory effect on the central nervous 
system. When adenosine binds to its receptors, it can inhibit the release 
of certain neurotransmitters, which can produce an anticonvulsant with 
a sedative effect. Considering that the molecular shape of CAF is similar 
to that of adenosine, the receptors of adenosine will, in turn, bind to CAF 
molecules, reducing and blocking the effect of adenosine on its re-
ceptors, thereby preventing adenosine-induced somnolence [2]. The 
European Committee of Experts on Food Science has recommended a 
daily CAF intake of less than 400 mg for adults [3]. For healthy adults, 
the U.S. Food and Drug Administration has also cited 400 mg a day as an 
amount that is not generally associated with dangerous and negative 
effects. Another chemical called chlorogenic acid (CGA) is found in high 
concentrations in coffee, around 70–350 mg per cup of coffee. CGA has 
good functions that can help people to prevent cardiac disease. CGA is 

also a good antioxidant that can decrease inflammation in cells and 
improve the efficiency of cells to metabolize carbohydrates, to stabilize 
glucose levels in human bodies [4]. An understanding of the amount of 
CAF and CGA can help consumers to choose the coffee. 

The commonly used CAF test in beverages is high-performance liquid 
chromatography (HPLC) [5,6], which requires the use of HPLC detectors 
and chromatography columns. HPLC, a gold standard in detecting CAF 
and CGA, has the advantages of high sensitivity and accuracy. However, 
the sample preparation procedure, which requires a well-trained tech-
nician, is typically time-consuming and rate-limiting. Moreover, the cost 
of test equipment and reagents is relatively expensive. The availability 
of HPLC in a coffee store or at home is very improbable. Measuring CAF 
or CGA levels at home or in a coffee shop can be crucial for quality 
control, health considerations, and labeling requirements. The quantity 
of CAF and CGA extracted from coffee beans is influenced by various 
factors, including the brewing method, temperature, and time, even 
while using the same beans. Recently, the development of portable 
caffeine detection tools has received significant attention. Ramos et al. 
[7] showed that caffeine could be selectively determined in complex 
samples using a portable flow system with amperometric detection. Xu 
et al. [8] fabricated an aqueous caffeine fluorescent sensor, which can 
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excite caffeine with a high selectivity of 250-fold fluorescence 
enhancement via nuclear magnetic resonance and Fourier transform 
infrared spectroscopies. This method has high sensitivity and selectivity 
but still requires large-scale equipment. 

Voltammetry using disposable electrodes has the advantages of 
speed, cost-effectiveness, high sensitivity, miniaturization, and portable 
detection and can be used to detect microsubstances in solution. Benalte 
et al. [9] used screen-printed gold electrodes to detect mercury content 
in water, and the sensitivity reached 1.1 ng/mL. Renedo et al. [10] used 
a carbon electrode modified with gold particles to detect the concen-
tration of oxalate (SbIII) in water, and the detection limit reached 9.33 ×
10− 10 M Tadesse et al. [11] fabricated an anthraquinone-modified car-
bon paste electrode (AQM-CPE) and studied its effect on CAF oxidation 
by cyclic voltammetry (CV). Square wave voltammetry was employed to 
plot a calibration curve, and the anodic peak current had a good linear 
relationship with the CAF concentration in the range of 2 × 10− 6 to 4 ×
10− 8 M with a correlation coefficient of 0.998 and a detection limit of 
1.43 × 10− 7 M Sun et al. [12] used a Nafion-modified glassy carbon 
electrode (Nafion-Gr/GCE) to analyze coffee using electrochemical 
methods, such as CV and differential pulse voltammetry (DPV). During 
the CV experiment, 0.01 M electrolyte sulfuric acid (H2SO4), nitric acid 
(HNO3), acetic acid (CH3COOH), and hydrochloric acid (HCl) were used 
as supporting electrolytes. The highest electrochemical response was 
realized with a supporting electrolyte of 0.01-M H2SO4. H2SO4 reagents 
with pH levels in a range of 0.5–2.0 were tested, and the peak potential 
decreased with an increase in pH. In our previous study [13], we 
described the development of an electrochemical sensor for Escherichia 
coli detection. The sensor used disposable biochips with a gold working 
electrode, a carbon counter electrode, and an Ag/AgCl reference elec-
trode. Besides, another study [14] introduced a biosensor for Aβ(1–42) 
conformation detection, employing disposable chips with gold nano-
particles deposited on a nanostructured gold electrode. 

Although these electrochemical sensors can be used to detect CAF 
and CGA, the cyclic voltammograms of different batches of disposable 
electrodes and different waiting times might vary. The electrode sizes at 
different locations for different manufacturing batches might vary. 
Harris [15] fabricated a carbon ink electrode and observed its poor 
reproducibility. The surface of the electrode was rough and highly 
heterogeneous with random arrays of carbon particles of different sizes, 
causing variable resistance, capacitance, or electroactive area. Addi-
tionally, the different waiting times might have resulted in different 
electrochemical signals. Chen et al. [16] developed a method for the 
electrochemical detection of vanillin and discovered that the oxidation 
peak of vanillin increased from 0 to 8 min of waiting time. Han et al. 
[17] experimentally observed a time-dependent electrical double layer 
in an electrolyte. They observed that to develop a fully electrical double 
layer with a large potential, they should wait for more than 0.05 s for 
their experimental setup. The voltammograms were dependent on the 
distribution of the electrical double layer relative to the sizes of the 
electrodes and waiting time. The commercialization of electrochemical 
sensors with screen-printed electrodes with such challenges will lead to 
poor repeatability and durability. 

Machine learning has received considerable attention in the last two 
decades in dealing with mass data analysis. Through mass data learning, 
a computer can build an algorithm to reduce measurement deviation 
[18–20]. Zhao et al. [21] reported an artificial intelligence (AI) system 
for improving the electrochemical multicomponent detection of insulin 
and glucose. A database containing inputs and outputs was used to build 
a regression model to resolve the overlapping peak problem. Blanco 
et al. [22] combined organic electrosynthesis with ANNs to improve 
electrosynthesis conditions to 30% and 325% in the electrosynthesis of 
adiponitrile production rates and selectivity, respectively. Alharbi et al. 
[23] reported surface-enhanced Raman scattering combined with an 
ANN to detect caffeine and its two major metabolites, theobromine and 
paraxanthine. A bootstrapping random resampling procedure was 
employed to reduce the deviation of Raman spectroscopy. Chen et al. 

[24] used a multiheaded dense neural network to quantitatively analyze 
the reduction of acetic acid in an aqueous solution, generating ther-
modynamic and kinetic data. They suggested that the AI approach 
allowed the extraction of parameters independent of the experimenter, 
thereby facilitating interlaboratory comparisons. 

Here, an electrochemical sensor combined with an ANN was devel-
oped for the intelligent sensing of CAF and CGA. The experimental 
procedure is shown in Fig. 1(a). First, a drop of coffee was extracted and 
mixed with an electrolyte. Second, disposable electrodes with a portable 
electrochemical analyzer were used to perform linear sweep voltam-
metry (LSV) and DPV. The features were extracted from the DPV and 
LSV results and used to train an ANN. An ANN model was built with 
appropriate activation and loss functions for data training. The CAF and 
CGA concentrations were modeled and accurately calibrated by ma-
chine learning. Finally, the CAF and CGA results were shown in the app 
on electronic devices, such as a cellular phone or PAD via Bluetooth. AI 
was used to model the multiple features in the voltammogram and 
analyze the relationships between these features. Furthermore, the 
variations in the electrochemical results for different manufacturing 
batches and waiting times were calibrated by the developed ANN model, 
which will speed up the commercialization of the CAF and CGA 
analyzer. 

2. Materials and methods 

2.1. Chemicals 

All the chemicals used were of analytical grade and used without 
further purification. The CAF and CGA were obtained from Sigma- 
Aldrich (USA). Phosphate-buffered solution and sulfuric acid were 
purchased from Echo Chemical (Taiwan). Coffee beans were purchased 
from Blossom Valley International (Taiwan). A real coffee sample was 
prepared from the coffee beans, which were first ground to powder, and 
40 g of the powder was soaked in water at 90 ◦C for 5 min. All the 
chemical solutions were prepared with double-deionized water (DDW 
were performed at 25 ◦C (±2 ◦C). 

The disposable electrochemical chips were fabricated on the printed 
circuit boards (PCB). The graphite electrode as the working electrode, 
graphite electrode as the counter electrode and Ag/AgCl electrode as the 
reference electrode were then screen printed on the PCB. The biocom-
patible glue which was purchased from PERMA Enterprise (Taiwan) was 
then dispensed on the electrochemical chips to form a wall to enclose 
working, counter and reference electrodes. The wall can be used to avoid 
sample spillage and to reduce the error. The electrochemical chips were 
used for testing only once without any surface modification. We added 
0.1 ml of the standard or real sample to 0.9 mL of DDW and mixed them 
by vortex for 10 s. Subsequently, 0.1 mL of the diluted solution was 
mixed with 0.9 mL of a sulfuric solution with a concentration of 0.05 M 
by vortex for 10 s. Finally, 0.2 mL of the mixed solution was dropped on 
the disposable electrochemical chips for the following electrochemical 
tests. 

2.2. Instruments 

All the electrochemical experiments were performed with a VBS-100 
portable electrochemical workstation purchased from VidaBio Tech-
nology (Taiwan). LSV and DPV were implemented. For LSV, the sweep 
voltage range, sweep rate, and initial voltage were 0–800 mV, 50 mV/s, 
and 50 mV, respectively. For DPV, the sweep voltage range and initial 
voltage were 0–1600 mV and 0 V, respectively. The pulse height, pulse 
width, step height, and step time are 5 mV, 5 ms, 5 mV, and 300 ms, 
respectively. The scan factors of LSV and DPV were already optimized. 
An electronic balance was purchased from Sartorius (Germany). The 
CAF standard test was performed by HPLC (JTTEC Service Corporation, 
Taiwan), and the CGA standard test was performed by HPLC at Chia Nan 
University of Pharmacy and Science (Taiwan) for comparison. 
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2.3. Feasibility study 

To simultaneously detect CAF and CGA in a single disposable elec-
trochemical chip, LSV and DPV were employed. For CAF sensing, Tajeu 
et al. [25] used a GCE modified with an attapulgite/Nafion film by CV 
and DPV. They observed that caffeine exhibited an irreversible oxidation 
peak around +1.41 V (vs. Ag/AgCl reference electrode) in 0.1-M H2SO4 
at a pH of 1.5 because of the strong antioxidant properties of CAF. The 
reaction equation for CAF involves the transfer of 4 protons and 4 
electrons as depicted in Fig. 2a. The initial step of this pathway, where 
caffeine (CAF) is converted to either trimethyl uric acid (TMU (I) or TMU 
(II)), may be mediated by caffeine oxidases that are currently not well 
characterized. The disposable electrochemical chip with graphite 
working and counter electrodes and an Ag/AgCl reference electrode was 

used to reduce the complexity of the fabrication process without further 
modification. Here, 0.01-M H2SO4 was used for safety and the waste 
recycling of consumer products. Namazian et al. [26] employed CV, 
chronoamperometry, and rotating disk electrode voltammetry to 
quantify CGA using a glassy carbon disk as a working electrode, a 
graphite bar as a counter electrode, and a saturated calomel electrode 
(SCE) as a reference electrode. They observed that CGA exhibited an 
irreversible oxidation peak around 0.617 V (vs. SCE). The electro-
chemical behavior of CGA was strongly dependent on the solution pH. 
Fig. 2b illustrates the oxidation process of CGA. CGA can undergo 
oxidation, resulting in the formation of CGA-ox and various oxidized 
products that possess unique chemical properties. CGA had a relatively 
lower oxidation potential than CAF. Here, a single sweep of LSV, fol-
lowed by a single sweep of DPV, was performed on the disposable 

Fig. 1. (a) Experimental procedure.  

Fig. 2. Oxidation mechanisms of (a) caffeine and (b) chlorogenic acid.  
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electrochemical chip to simultaneously quantify CAF and CGA. 
The oxidation potential of CGA around 0.25 V (vs. Ag/AgCl reference 

electrode) was considerably smaller than that of CAF around 1.05 V. The 
characteristic oxidation peaks of CGA were measured by LSV within a 
sweep voltage range of 0–800 mV. However, when the voltage exceeded 
800 mV, the nonFaraday (capacitive) current significantly affected the 
CAF measurements during the experiment. DPV was employed to reduce 
the nonFaraday current and quantify CAF by measuring the current 
immediately before the increasing base potential between pulses with 
equal increments. After LSV measurements, DPV was employed to sweep 
from 0 to 1600 mV. The features of LSV and DPV were used to quantify 
CGA and CAF. 

2.4. Machine learning model 

Machine learning is aimed at finding out rules from a large amount of 
data. Machine learning was employed to reduce variations when 
different electrochemical modes were continually applied on the same 
working electrode. Using a suitable algorithm, a set of machine learning 
models were established to discover or predict trends. The most widely 
used machine learning method is supervised learning, which is a tech-
nology that allows machines to use the experience under supervision. 
The construction of the supervised machine learning model originates 
from the establishment of a dataset for input and predictive (actual) 
values. The input and predictive values can be as simple as numbers, 
matrices, vectors, or more complex pieces of text, pictures, or even DNA 
sequences. Thereafter, a suitable algorithm is used to analyze the 
existing data to establish a model that can judge or predict new data. For 
supervised learning, ANN is one of the most powerful tools for classifi-
cation, recognition, and prediction. ANN is a model similar to the human 
nervous system, which simulates the transmission and calculation of 
neurons. ANN is considerably more powerful and useful compared with 
traditional regression and statistical models. 

Here, an ANN was developed using an open-source machine learning 
library in Tensorflow. The ANN was mainly divided into three parts, 
which are the input, hidden, and output layers. The input layer repre-
sents the input value mentioned in the preceding paragraph, which is the 
basis for the model to judge, whereas the hidden layer is mainly used by 
the ANN. The calculation part is the key to connecting the input and 
output layers. The output layer is the prediction of the actual value by 
the model, representing the result of the model prediction. Each neuron 
is only connected to the upper and lower layers, independent of other 
neurons in the same layer. It is similar to the human nervous system. The 
brain calculates data and foresees the target by signal transmission be-
tween nerves. The input layer represents the collection of input values, 
and the hidden layer is responsible for calculating the input values. 

It is also like the critical joint, which links the input and output 
layers. The output layer shows the target values by prediction. Each 
neuron only connects the former layer and the next layer, and every 
neuron is independent in the same layer. A neuron stands for the input 
factor weight and activation function shown in Fig. 1(b). The equation of 
activation function is shown below. 

y =
∑n

i=1
xiwi + b (1)  

y, xi , wi , and b are the output value, input value, weighting coefficient, 
and model bias, respectively. 

The output of y was calculated by activation functions before 
transmitting to the next ANN layer. Eq. (1) shows a linear equation. The 
nonlinear equation was produced by activation function processing to 
deal with nonlinear data. A single neuron can already predict target 
values by input values. The network of multiple neurons is built to solve 
linear or nonlinear equations to increase the accuracy of prediction with 
a complicated database [27]. The activation functions can help the ANN 
model to solve linear and nonlinear equations between each neuron. The 

rectified linear unit is applied to the activation function to solve the 
relationship between the concentration and characteristic signal. It 
maps the resulting values between 0 and 1 or − 1 and 1 etc. Here, an 
output value was obtained by neuron calculation. This value could be 
very different from the real value, which we exempted. The difference 
between output and real values is called the loss function. The loss 
function is inputted into the optimizer to generate a new loss function, 
and the new loss function is inputted to the neurons to change the 
weighting coefficients to reduce the loss function in the next input value, 
which is inputted to the ANN model. The goal of the ANN is to produce 
the minimum loss function. The loss function obtained by Huber [28] 
was used in the present study. The Huber loss function can improve the 
robustness of the squared loss function. The squared loss function is too 
sensitive for outliers. The Huber loss function can combine the mean 
squared error and absolute value functions. By operating the ANN 
model, the optimizer changed the weighting coefficients through 
repeated training. The optimizer developed by Nadam. [29,30] was 
utilized. When the loss function approached convergence, the ANN 
model stopped training. The reliability could be obtained by comparing 
the training and testing sets. The quality of the ANN model was generally 
determined using the mean absolute error (MAE) and root-mean-square 
error (RMSE). The electrochemical plot comprised large data points. 
Here, the data of the feature peak was discovered and defined before 
data was inputted into the training set. A difference of less than 10% 
between the predicted and true values was regarded as a correct pre-
diction. The definition of accuracy in this study was how much per-
centage of data was in this range. 

2.5. Database collection 

Here, 14 different concentrations of CAF and CGA each were pre-
pared. The same concentrations of CAF and CGA were prepared in 
sample test tubes as standard solutions. They were 100, 500, 1000, 
1500, 2000, 2500, 3000, 4000 and 5,000 mg/L. The commercial coffee 
samples were tested via HPLC in a chemical lab. The HPLC results served 
as a reference for commercial coffee. These samples were tested using 
electrochemical methods at the same time. 

All the electrochemical experiments were conducted with sensors 
and the VBS-100 portable electrochemical workstation. Electrochemical 
plots were imported from the VBS-100 graphing software. The CGA 
oxidation peak was observed near 300 mV, and the CAF oxidation peak 
was observed near 1200 mV in the DPV plot. We developed an algorithm 
to find the maximum from 100 to 300 mV and integrated the curve area 
between 100 and 300 mV. We denoted the maximum peak potential of 
CGA by CAF-V1, the maximum peak current of CGA by CAF-I1, and the 
integrated area of CGA by CAF-A1 in the DPV plot. The CAF oxidation 
peak was observed near 1200 mV. We developed an algorithm to find 
the maximum from 1000 to 1300 mV and integrated the curve area 
between 1000 and 1300 mV. We denoted the maximum peak potential 
of CAF by CAF-V2, the maximum peak current of CAF by CAF-I2, and the 
integrated area of CAF by CAF-A2 in the DPV plot. The future peak of 
CGA in the DPV plot inputted into the ANN model could help to increase 
prediction accuracy. The CGA oxidation peak was observed near 300 mV 
in the LSV plot. We developed an algorithm to find the maximum from 
200 to 550 mV and integrated the curve area between 200 and 550 mV. 
We denoted the maximum peak potential of CGA by CGA-V1, the 
maximum peak current of CGA by CGA-I1, and the integrated area of 
CGA by CGA-A1 in the LSV plot. The CGA oxidation peak was also 
observed near 300 mV in the DPV plot. We developed an algorithm to 
find the maximum from 100 to 300 mV and integrated the curve area 
between 100 and 300 mV. We denoted the maximum peak potential of 
CGA by CGA-V2, the maximum peak current of CGA by CGA-I2, and the 
integrated area of CGA by CGA-A2. 

After all the feature values were calculated, the values were 
normalized. The data was mapped from 0 to 1, as shown in Eq. (2). 
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xnormalization = (x − xmin)/(xmax − xmin) (2) 

Thereafter, the six feature values of CAF were assigned a dataset. The 
CAF training set of the standard solutions and real samples contained 
701 cases, and the CAF test set of the standard solutions and real samples 
contained 175 cases shown in Table 1. The final concentrations were the 
values of the output layers. Here, 1000 neurons were between the input 
and output layers. The CAF ANN model was completed after 10,000 
training times. The six feature values of CGA were assigned a dataset. 
The CGA training set of the standard solutions and real samples con-
tained 428 cases, and the CGA test set of the standard solutions and real 
samples contained 107 cases shown in Table 1. The concentrations were 
the values of the output layers. Here, 1000 neurons were between the 
input and output layers. The CGA ANN model was also completed after 
10,000 training times. 

3. Results and discussion 

3.1. ANN model prediction 

Figure 3a shows the LSV plot of different CGA concentrations. When 
CGA increased, a large oxidation peak was observed near 300 mV. The 
observed peak values were 8.1, 22.0, 39.7, 56.9, 75.2, 92.1, 109.2, 
144.8, and 181.3 μA for CGA concentrations of 100, 500, 1000, 1500, 
2000, 2500, 3000, 4000 and 5,000 mg/L, respectively. The blank so-
lution without CGA did not exhibit any peaks. 

Figure 3b shows the DPV plot of different concentrations of CGA and 
CAF. The peak values of CGA were observed at approximately 68.2, 
188.1, 279.5, 368.3, 467.1, 501.8, 529.9, 555.6, and 623.2 µA, for CGA 
concentrations of 100, 500, 1000, 1500, 2000, 2500, 3000, 4000 and 
5,000 mg/L, respectively, near 300 mV. Additionally, a significant 
oxidation peak was observed at around 1100 mV only when the con-
centration of CAF increased. The peak values for CAF were measured at 
189.2, 254.8, 339.1, 422.3, 505.9, 588.7, 673.2, 840.1 and 1005.8 µA 
for concentrations of 100, 500, 1000, 1500, 2000, 2500, 3000, 4000 and 
5,000 mg/L, respectively. Importantly, no peaks were observed in the 
blank solution where neither CAF nor CGA was present. Fig. 3 provides a 
visual representation of the distinct electrochemical signals of caffeine 
and chlorogenic acid at different concentrations. Changes in concen-
tration can influence the oxidation current, allowing for the differenti-
ation and definition of the characteristic signals of caffeine and 
chlorogenic acid. 

For the CAF training set, there are a total of 701 data points, with 526 
points corresponding to standard caffeine solution concentrations and 
175 points representing real coffee samples. The concentrations of the 
real coffee samples in the training set were determined using HPLC. A 
linear regression equation was derived from the values of CAF-I2 with 
the CAF concentrations from 100 to 5,000 mg/L. The equation for the 
linear regression line is y = 1.670x+ 171.8, with an coefficient of 
determination R2 value of 0.94. The test set comprises 175 data points, 
with 116 points representing standard caffeine solution concentrations 
and 59 points representing real coffee samples. Similar to the training 
set, the concentrations of the real coffee samples in the test set were 
determined using HPLC. The concentrations of the test samples were 

calculated using the linear regression equation derived from Fig 4(a). 
Fig. 4(b) displays the plotted values of calculated and real concentra-
tions of CAF for the training set. The RMSE for the prediction is 59.39, 
and the MAE is 47.809. Notably, poor predictions were observed for 
samples with concentrations exceeding 230 mg/L. 

Simultaneously, the measurement results from the training set were 
utilized in the ANN model. After 10,000 training iterations and a 
training time of 140 min, a caffeine-specific ANN model was developed. 
The precited concentrations were compared to the real concentrations 
for the samples from the training set, as illustrated in Fig. 4(c). The 
RMSE was calculated to be 2.77, and the MAE was 2.05. Subsequently, 
the concentrations of the samples from the test set were calculated using 
the ANN model depicted in Fig 4(c). The precited concentrations were 
then compared to the real concentrations for the test set samples, as 
displayed in Fig. 4(d). The RMSE for this comparison was found to be 
10.20, with a corresponding MAE of 7.01. The results demonstrate that 
the ANN models exhibit high potential in accurately predicting CAF 
concentrations. 

The CGA training set comprises a total of 428 data points, with 404 
points representing standard caffeine solution concentrations and 24 
points representing real coffee samples. The concentrations of the real 
coffee samples in the training set were determined using HPLC. A linear 
regression equation was derived from the CGA training set, as shown in 
Fig. 5(a), to establish a relationship between the values of CGA-I1 and 
the CGA concentrations. The equation for the linear regression line is 
y = 0.350x+ 4.954, with an R2 value of 0.97. The test set consists of 117 
data points, with 111 points representing standard caffeine solution 
concentrations and 6 points representing real coffee samples. Similar to 
the training set, the concentrations of the real coffee samples in the test 
set were determined using HPLC. The concentrations of the test set 
samples were calculated using the linear regression equation derived 
from Fig 5(a). Fig. 5(b) depicts the comparison of calculated and real 
concentrations of CAF for the training set. The RMSE for the prediction is 
36.74, and the MAE is 26.84. Notably, poor predictions were observed 
for samples with concentrations of 127 and 179 mg/L. 

The measurement results from the training set were also utilized in 
the ANN model. Following 10,000 training iterations and a training time 
of 75 min, a caffeine-specific ANN model was developed. The precited 
concentrations were compared to the real concentrations for the samples 
from the training set, as illustrated in Fig. 4(c). The RMSE was found to 
be 4.10, and the corresponding MAE was 2.87. Additionally, the con-
centrations of the samples from the test set were calculated using the 
ANN model shown in Fig 4(c). The precited concentrations were then 
compared to the real concentrations for the test set samples, as displayed 
in Fig. 4(d). The RMSE for this comparison was found to be 6.31, with a 
corresponding MAE of 4.48. These results indicate the potential of the 
ANN models in accurately predicting CAF concentrations. 

3.2. ANN model developed for different fabrication batches of sensors 

Specific electrochemical signals were observed among four fabrica-
tion batches of sensors. Alterations in the fabrication process can 
introduce unknown factors that are challenging to control consistently 
over different batches. One such factor is fabrication tolerance, which 
can contribute to the size variations in the electrochemical electrodes, 
producing consequent variations in observed electrochemical signals. 
Figs. 6(a) displays plots obtained from four samples of different fabri-
cation batches using the LSV technique, whereas Fig. 6(b) presents plots 
obtained using DPV. Notably, the electrochemical features observed in 
Figs. 6(a) and (b) differ from each other for different batch. The accuracy 
of CAF and CGA measurements for sensors from different fabrication 
batches is found to be poor when employing a linear regression equa-
tion. This indicates that the linear regression equation may not be 
effective in estimating the variations introduced by different fabrication 
batches. 

We conducted experiments using six different concentrations of CAF 

Table 1 
CAF and CGA model cases.  

CAF 

Set Case 

Training set 701 (contains 285 real samples) 
Test set 175 (contains 59 real samples)  

CGA 
Set Case 

Training set 428 (contains 24 real samples) 
Test set 107 (contains 6 real samples)  
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Fig. 3. (a) The plot of LSV measurement for different CGA concentrations (b) The plot represents the DPV measurements for different concentrations of CAF 
and CGA. 

Fig. 4. (a) Linear regression line for CAF training set, (b) calculated results using linear regression equation for CAF test set, (c) predicted concentration using ANN 
model for CAF training set, and (d) predicted results using ANN model for CAF test set. 
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Fig. 5. (a) The linear regression line for the CGA training set, (b) calculated results using linear regression equation for the CGA test set, (c) predicted concentration 
using ANN model for the CGA training set, and (d) predicted results using ANN model for the CGA test set. 

Fig. 6. (a) The plots of the LSV measurement for four samples from different fabrication batches. (b) The plot of the DPV measurement for four samples from 
different fabrication batch. 
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and CGA of four different fabrication batches of sensors. Each fabrica-
tion batch comprised 120 sensors. To analyze the data, we constructed 
four linear regression models using CAF and CGA sensors from each 
respective fabrication batch. Figs. 7(a) displays the results for the CAF 
measurement, showing the values of R2 for each fabrication batch. The 
R2 values for batches 1, 2, 3 and 4 were found to be 0.96, 0.97, 0.95 and 
0.97, respectively. These R2 values indicate the degree of correlation 
between the measured CAF concentrations and the predictions made by 
the linear regression lines for each fabrication batch. Each linear 
regression equation exhibits a reasonable coefficient of R2 for individual 
fabrication batches. However, when combining all sensors from batches 
of 1, 2, 3 and 4, the overall R2 decreases to 0.92, as depicted in Fig. 7(c). 
For the CGA measurement, Fig. 7(c) reveals the values of R2 for each 
fabrication batch. Batch 1, 2, 3 and 4 exhibited R2 values of 0.97, 0.71, 
0.98 and 0.99, respectively. Except for batch 3, each linear regression 
equation describes favorable results in terms of the R2. However, when 
combining the results from all four fabrication batches to construct a 
single linear regression line, the R2 decreases considerably to 0.69. This 
challenge was overcome by the ANN model. Figs. 7b and 7d show that 
four batches of data could be predicted using the ANN model. Table 2 
show that the RMSE and MAE of CAF in the four batches of sensors were 

2.14 and 1.54, respectively. The RMSE and MAE of CGA in the four 
batches of sensors were 2.85 and 1.99, respectively. The CAF accuracy 
was improved from 40.3% to 91.7%, and the CGA accuracy was 
improved from 37.5% to 77.7%. 

The mechanism of the electrochemical sensor is applying different 
potentials to the electrodes. Electrochemical reactions occur near the 
electrode surface. Here, the working electrode was printed using 
graphite. When different batches of sensors were produced, different 
electrochemical features were generated because it was difficult to 
control the conditions to be the same in different manufactured batches. 

Fig. 7. (a) Linear regression lines for CAF measurements from different batches, (b) predicted results for CAF measurements from different batches using the ANN 
model, (c) linear regression lines for CGA measurements from different batches, (d) predicted results for CGA measurements from different batches using the 
ANN model. 

Table 2 
Comparison of calibration linear model and ANN model for four different 
fabrication batches.   

Calibration line 
model (CAF) 

ANN 
model 
(CAF) 

Calibration line 
model (CGA) 

ANN 
model 
(CGA) 

MAE 200.59 1.54 22.59 1.99 
RMSE 201.49 2.14 27.01 2.85 
Accuracy 

(%) 
40.3 91.7 37.5 77.7  
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To require the same sensing results in different batches of sensors, the 
design codes of different batches were entered into the device to cali-
brate the results after measurements. It is a well-known method for 
commercial electrochemical sensors. Unique chemical reactions were 
performed in this study. The CAF reaction can be enhanced using a 0.1 M 
sulfuric solution. Although the CAF signal can be enlarged with this 
method, a nonuniform electrochemical double layer was formed when 
sulfuric acid contacted the electrodes. The different contact times caused 
the varying thicknesses of the electrochemical double layers, which 
formed near the electrodes. The electrochemical plots were shifted by 
this interference. 

3.3. ANN model developed for different waiting times 

In this study, we also investigated the impact of different waiting 
times on the sensors. Varied waiting times could produce alterations in 
the interface morphology of the double layer on the surface of the 
sensor. Fig. 8(a) illustrates the plots obtained for samples with waiting 
times of 0, 30, 60, 180 and 300 s using LSV, whereas Fig. 8(b) presents 
the plots obtained using DPV. Notably, both LSV and DPV plots exhibit 
distinct electrochemical features for different waiting times. Addition-
ally, considerable shifts in the peaks are observed in both types of plots 
for different waiting times. The time required for the solution to fully 
cover the electrochemical electrodes on the sensing area of the sensor 
should be considered. This is remarkable due to variations in waiting 
times among different individuals and the limitations of operating 
conditions. It is crucial to acknowledge the impact of waiting time as it 
can affect the accuracy of CAF and CGA measurements. In our study, we 
observed poor accuracy when different waiting times were considered. 
No potential difference was applied on the sample during the waiting 
time. 

The ANN model was developed to reduce the sensing deviations of 
CGA and CAF in this study. We tested 500 mg/L CAF and CGA samples 
each to determine the uniformity of the sensing results. Before applying 
the ANN model, the deviation was large at each waiting time, and the 
different waiting times produced different sensing results in the same 
solution. After applying the ANN model, the deviation reduced at each 
waiting time, and the CAF and CGA predictions became more consistent. 
The comparison is shown in Fig. 9. 

3.4. Discussion 

The linear calibration line equation is a common method for pre-
dicting unknown sample concentrations. However, the predicted results 
of the coffee sample were poor. Table 3 show that the RMSE and MAE of 
the CAF test set were 59.38 and 47.80, respectively. Table 4 show that 
the RMSE and MAE of the CGA test set were 36.74 and 26.84, respec-
tively. The accuracy of CAF was 15.3%, and that of CGA was 32.7%. 
Zaho [21] reported a method, which combines random forest and linear 
equations to analyze glucose and insulin in serum. This method was 
employed to predict CAF and CGA concentrations. After Zaho’s model 
was built by the training set, we compared the test set results to deter-
mine the most suitable model for the coffee sample. Table 3 show that 
the RMSE and MAE of the CAF test set were 15.08 and 12.02, respec-
tively. Table 4 show that the RMSE and MAE of the CGA test set were 
24.63 and 16.28, respectively. The accuracy of CAF was 76.3%, and that 
of CGA was 53.9%, respectively. After applying the ANN models to 
analyze the coffee sample, the RMSE and MAE of CAF test were 10.20 
and 7.00 Table 3, respectively. The RMSE and MAE of CGA test were 
4.48 and 6.31 in Table 4, respectively. The accuracy of CAF reached 
92.4%, and that of CGA reached 90.6% in this work. Tables 3 and 4 show 
the prediction results using different models. 

4. Conclusion 

The requirements for measuring CAF and CGA are rising and tradi-
tional methods, such as HPLC, are time-consuming and expensive. 
Electrochemical methods enable a short sensing time. CAF and CGA 
were both detected in 20 s in this study. Considering that the electro-
chemical measurement requires the extra potential to simulate specific 
chemical reactions, the minute different uniformities of electrochemical 
sensors can generate different results in the same sample. The different 
batches of sensors and different waiting times were two major chal-
lenges discussed in this paper. The ANN models were developed after 
machine learning. The ANN models prevented noise interference and 
predicted accurate results. After applying the ANN models to analyze the 
coffee sample, the accuracy of CAF reached 92.4%, and that of CGA 
reached 90.6%. The ANN models also solved the problem of unstable 
quality among different batches of sensors. The different thicknesses of 
the electrochemical double layer formed because the operator could not 
control the dropping method to be the same every time. The ANN 
models helped to reduce uncontrollable variables to achieve the same 

Fig. 8. (a) LSV measurement plots for samples with different waiting times of 0, 30, 60, 180, and 300 s. (b) DPV measurement plots for samples with different 
waiting times of 0, 30, 60, 180 and 300 s. 
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sensing results. The method can be used to detect CAF and CGA with 
accuracy. It also enhances other electrochemical sensors by improving 
the measurement error for commercial products. 
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